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1.  Estimation of R: Deterministic.   In the main text (Fig. 2), we estimated R from the 
mean serial interval V and the exponential growth rate of the cumulative number of cases 

in the epidemic ln( ( ))( ) Y tt
t

λ = using the formula 21 (1 )(R V f f V )λ λ= + + − , where f is 

the ratio of the infectious period to the serial interval.  For clarity in Fig. 2 we used a 
single value of f=0.7 (equivalent to f=0.3).  This formula, a generalization of the more 
commonly used formula 1R Vλ= + (10) from the SIR model, is obtained by linearizing 
the SEIR model (11) by assuming no depletion of susceptibles, and obtaining the larger 

eigenvalue of the linearized system  where E and I are the 

number of infected but not yet infectious and infectious persons respectively, L is the 
duration of the latent period, D is the duration of the infectious period, and the mean 
serial interval is the sum of the mean infectious and mean latent periods, V=L+D.  R is 
the reproductive number.  This eigenvalue can be rewritten as 
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, where f=D/V is the ratio of the infectious period to the 

serial interval.  The formula for R above is given by rearranging this equation. 
 Under this equation, the particular second-order dependence of the estimate of R 
on the relative contributions of latent and infectious period depends on the exponentially 
distributed sojourn times assumed in the simple, deterministic SEIR model.  Fig. S1 
below shows that the correction factor is relatively unimportant except for large Rs and 
long serial intervals. 
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FIGURE S1: Sensitivity of deterministic estimates of R to varying values of f, the ratio of 
the infectious period to the serial interval.  Dependence is on the product f(1-f); hence the 
results are symmetric.  Values of f range from 0 or 1 (red) to 0.5 (black). (a) Y(t)=1358 
cases at t=63 days; (b) Y(t)=425 cases at t=41 days; (c) Y(t)=7919 cases at t=185 days; (d) 
Y(t)=15,000 cases at t=185 days.



2. Transmission model for the effect of quarantine 
 
The model depicted in Fig. 5 consists of the following ordinary differential equations. 
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The model is a modification of the standard SEIR model (10), tracking susceptible, 
infected but not yet infectious, infectious, and recovered/immune individuals in 
compartments S, E, I and R respectively.  At time t=0, there are N0 people in the 
population, of whom one is exposed but not yet infectious (E), and all the rest are 
susceptible (S).  In our model, the I compartment is composed of cases who are not yet 
isolated (IU) and those who have been isolated (ID).  k is the baseline daily number of 
contacts per capita, and b is the probability of transmission per contact between a 
susceptible and an infectious person. We have separated the parameters k and b, rather 
than use the more conventional composite transmission parameter, β. We thus assume 
that each infectious person makes k contacts per day, of whom a proportion b are infected 
if the infectious person is undetected.  The number of actual contacts per day is assumed 
to be linearly related to the population size (standard for models of directly transmitted 
infectious diseases); hence, N0 appears in the denominator of the transmission term.  1/p 
is the mean time for progression from latently infected to infectious.  v is the per capita 
recovery rate, m the per capita death rate, and w the mean daily rate at which infectious 
cases (who are not in quarantine) are detected and isolated.  We make the simplifying 
assumption that isolated cases (ID) do not infect anyone; clearly this is an optimistic 
assumption, and the rate of isolation w should be thought of as a rate of “effective” 
isolation.  Under these assumptions, the mean duration of infectiousness is 1/(v+m+w) .   
 
We model quarantine as follows.  A fraction q of all persons infected by an infectious 
person are successfully quarantined, moving to EQ.  A fraction q of all persons contacted 
but not infected by an infectious person are also quarantined, moving to SQ.    
 
These assumptions involve several simplifications.  We make the simplification that for 
each infectious case, the fraction of uninfected contacts who are quarantined is the same 
as the fraction of infected contacts who are quarantined before they become infectious; 
both are given by q.  In actuality, for each infectious case, the fraction of infected 
contacts quarantined before becoming infectious will be determined by the fraction of 



contacts who can be traced and by the fraction of those who are still in the latent phase 
(not yet infectious) at the time they are traced.  This may be best seen by an example.  
Suppose a particular infectious individual has 60 contacts, and 4 of these 50 are infected.  
Further, suppose that authorities are able to track down 75% of the individual’s contacts; 
then we expect they will find (on average) 45 contacts, 42 uninfected and 3 infected.  Of 
the infected ones, some will be found too late as they are already infectious.  Thus, the 
fraction of susceptible contacts quarantined will be 75%, but the fraction of infected 
contacts quarantined before they are infectious will be less than that.  By defining q as the 
fraction of infected contacts quarantined before they become infectious, and assuming the 
same fraction of noninfected contacts of infectious persons are quarantined, we are 
underestimating the total number of noninfected persons quarantined.  We also assume 
that if a latently infected person is quarantined, s/he will not transmit infection to others 
in quarantine, and will be detected before infecting anyone else: thus, rather than a 
duration of infectiousness of 1/(v+m+w), a quarantined person has zero duration of 
infectiousness.  Like our assumptions about isolation, this is clearly optimistic, and q 
should be thought of as an “effective” proportion: the proportion of contacts of cases 
effectively quarantined fast enough and with adequate detection so that if they become 
infectious, they are isolated before they can transmit.  We assume that susceptible (non-
infected) contacts remain quarantined for an average of 1/rQ days.  
  
In the absence of quarantine, the reproductive number for this model is given by: 

kbR
v m w

=
+ +

 .   The effect of quarantining a fraction q of contacts of infectious persons 

is to multiply this expression by (1-q).   
 
Parameter values for this simulation are given below in Table S1. 
 

Parameter Symbol Baseline Value Range Tested Reference 
Reproductive number R 3.0  main text 
Contact rate  k 10 per day 5 – 20 per day unknown 
Average time of progression 
from latent infection to 
infectious 

1/p 5 days  (1) 

Average duration of 
infectiousness 

1/(w+m+v) 5 days 1-5 days (1) 

Duration of quarantine 1/rq 10 days  WHO 
recommendation 

 
Table S1.  Parameters used in the quarantine simulations 



3. Sensitivity of person-days in quarantine to assumed number of daily contacts k.   
 
One model parameter that is largely unknown is the average number of daily contacts  
made by an individual, k. Our estimate of R depends only on the product of this number 
and the probability of transmission per contact, β.  However, the logistics of quarantine 
depends on the separate values of these parameters because the daily number of contacts 
quarantined for each infectious person is equal to q k, the proportion of contacts 
quarantied times the daily number of contacts.   Thus we expect that the number of 
person-days in quarantine will be approximately linearly related to k for a given q and a 
given R0, though not exactly so because larger values of k result in more susceptible 
persons quarantined, thereby slightly reducing transmission.  This is borne out by 
simulations with varying values of k shown below in Fig. S2.  Because k is unknown, the 
actual numbers in Fig. 6b and Fig. S2 should be seen as illustrative.  However, the key 
point is that if an epidemic with an R of 3 is allowed to proceed in a population, even 
under the relatively modest assumption that an individual has 25 contacts during a 5 day 
infectious period, enormous numbers of people would be quarantined unless the 
quarantine, combined with isolation measures, were effective enough to check the spread 
of the epidemic.   
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FIGURE S2: Sensitivity of average days in quarantine to the number of daily contacts 
assumed per infectious person: (a) k=5; (b): k=20.  These figures correspond to Fig. 6b in 
the main text, for which it is assumed k=10.   


	Baseline Value
	Range Tested
	Reference
	3.0
	main text

